(x^2+1)-20+(-18+5)+13=4

Simple and best practice solution for (x^2+1)-20+(-18+5)+13=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2+1)-20+(-18+5)+13=4 equation:



(x^2+1)-20+(-18+5)+13=4
We move all terms to the left:
(x^2+1)-20+(-18+5)+13-(4)=0
determiningTheFunctionDomain (x^2+1)-20+13-4+(-18+5)=0
We add all the numbers together, and all the variables
(x^2+1)-20+13-4+(-13)=0
We add all the numbers together, and all the variables
(x^2+1)-24=0
We get rid of parentheses
x^2+1-24=0
We add all the numbers together, and all the variables
x^2-23=0
a = 1; b = 0; c = -23;
Δ = b2-4ac
Δ = 02-4·1·(-23)
Δ = 92
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{92}=\sqrt{4*23}=\sqrt{4}*\sqrt{23}=2\sqrt{23}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{23}}{2*1}=\frac{0-2\sqrt{23}}{2} =-\frac{2\sqrt{23}}{2} =-\sqrt{23} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{23}}{2*1}=\frac{0+2\sqrt{23}}{2} =\frac{2\sqrt{23}}{2} =\sqrt{23} $

See similar equations:

| -4+5h=-9+2h | | (2x+1)-20+(-18+5)+13=4 | | -5+5h=-10+3h | | 13=5+x/0,2 | | w2=43 | | 25^x=23*5^x+50 | | 4x/8=3/8 | | (2-3D)(4d-3D)=0 | | k/2-1=4 | | –4.4d+9.48=7.44−7.8d | | 3x/2=(x-1+2x-(-3)x) | | (t)=140 | | 7(23–y)=84; | | x+8=-3x+0 | | 15=-5t+45 | | 40=-5t+45 | | 3x/2=x-1+2x-(1-4)x | | 3x+2(x-23)=119 | | 7(23–y)=84 | | 12x+41=137 | | 2x+75°+65°+x+3x=360 | | 2a–6=0 | | 3^(2x-1)=75 | | 5(x-13)+2x=75 | | -0.10(13)+0.15x=0.05(x-10) | | .343-174x=43x-308 | | 0.14y+0.09(y+4000)=1970 | | -2.87-5.6h=-9.5-6.9h | | 3x+14/4+x+48/6=17 | | -2.8g-1.08=-3.7g-5.31 | | -4w=-5-3w | | 10-5j=-9j-10+6j |

Equations solver categories